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Setup for the HVP calculation [Aubin et al., 2019]

2+1+1 flavors of HISQ fermions MILC [Bazavov et al., 2017]

Three lattice spacings, ∼ 0.06, 0.09, 0.12 fm, roughly same volume

Connected HVP computed only for degenerate light quarks, physical pion mass

HVP constructed from conserved vector currents (no renormalization)

Partially quenched: Naik term is omitted in the current

Time momentum representation Bernecker-Meyer 2011

AMA and full volume LMA RBC/UKQCD

[Blum et al., 2018, Blum et al., 2013, Bali et al., 2010, Giusti et al., 2004, DeGrand and Schaefer, 2005]

Finite volume corrections to NNLO in ChiPT in coordinate space
c.f. [Bijnens and Relefors, 2017] in momentum space
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HISQ 2+1+1 physical point ensembles MILC [Bazavov et al., 2017]

mπ AMA measurements
(MeV) a (fm) size L (fm) mπL LM srcs (approx-exact-LMA)

133 0.12121(64) 483 × 64 5.82 3.91 3000 43 × 4 26-26-26
130 0.08787(46) 643 × 96 5.62 3.66 3000 43 × 4 36-36-40
134 0.05684(30) 963 × 192 5.46 3.73 2000 33 × 8 21-21-22

AMA+LMA:

3000 and 2000 (963) exact low modes of preconditioned Dirac op, M†M

Eigenvectors of staggered Dirac op M come in pairs, ±iλ
Reconstruct eigenvector of M on all sites, (ne , no), iλn

Get second eignvector for free: (ne ,−no), −iλn
Use for full volume LMA, deflation of CG, improved approximation in AMA
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Noise reduction: AMA+LMA RBC/UKQCD [Blum et al., 2013, Giusti et al., 2004, DeGrand and Schaefer, 2005]

All mode averaging (AMA) combined with full volume low mode averaging (LMA) can
be very effective in reducing statistical errors for HVP (C. Lehner RBC/UKQCD [Blum et al., 2018])

AMA 〈O〉 = 〈O〉exact − 〈O〉approx +
1

N

∑

i

〈Oi 〉approx

+LMA − 1

N

∑

i

〈Oi 〉LM +
1

V

∑

i

〈Oi 〉LM

〈Oi 〉approx: props with Nlow exact low modes, sloppy (relaxed stopping condition) CG
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Noise reduction: AMA+LMA [Blum et al., 2013, Giusti et al., 2004, DeGrand and Schaefer, 2005]
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average c.f . RBC/UKQCD [Blum et al., 2018]
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Bounding method RBC/UKQCD [Blum et al., 2018], BMW [Borsanyi et al., 2018]
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Finite Volume Corrections

Use chiral perturbation theory (ChiPT) in configuration space to compute finite
volume corrections to C (t)
(Bijnens and Relefors computed NNLO corrections in momentum space)

NLO including leading discretization (taste symmetry breaking) effects

NNLO in continuum. Big!

NLO+taste (a 6= 0) NLO (a = 0) NNLO (a = 0)

483, 0.12 fm 51.6 18.1 7.4
643, 0.09 fm 34.2 21.6 9.0
963, 0.06 fm 9.5 20.6 9.1

Corrections to aµ given in units of 10−10

Procedure: correct a 6= 0 to NLO, a→ 0, add average NNLO correction
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Continuum limit

Same ensembles as FHM, different analysis method (FHM [Davies et al., 2019])
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Comparison with other recent results
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Window method RBC/UKQCD [Blum et al., 2018] comparison with DWF and R-ratio

aWµ =
∑

C (t)w(t)(Θ(t, t0,∆)−Θ(t, t1,∆)), Θ(t, t ′,∆) = 0.5(1+tanh((t−t ′)/∆))
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Immediate plan

1 Extend LMA to 3000 (×2) eigenvectors on 963 to match 483, 643

number of needed LM depends on physical volume
If 963 error ≈ 643 error, → stat error in continuum limit ×1/2

2 New ensemble, 0.15 fm

Improve continuum limit
test LMA on smaller lattice, but same physical volume, mass

3 check NNLO ChiPT against momentum space calculation (Bijnens and Relefors)

4 extend NNLO ChiPT to finite a (taste breaking)
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Longer term plans

Improving long distance contributions

GEVP, improved bounding method (BMW, Mainz, RBC/UKQCD)
Model independent fit using Padé approximants

Improve statistics by ∼ ×10, competitive with RBC/UKQCD, FHM, ...

implement GEVP, local currents, ...
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Time-momentum representation Bernecker-Meyer 2011

Interchange order of FT and momentum integrals

Π(q2)− Π(0) =
∑

t

(
cos qt − 1

q2
+

1

2
t2
)
C (t)

C (t) =
1

3

∑

x,i

〈ji (x)ji (0)〉

w(t) = 2α2

∫ ∞

0

dω

ω
f (ω2)

[
cosωt − 1

ω2
+

t2

2

]

aHVP
µ =

∑

t

w(t)C (t)

(note double subtraction)
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Staggered Dirac operator M

Sum of hermitian and anti-hermitian parts, so it satisfies (even-odd ordering)

M

(
no
ne

)
=

(
m Moe

Meo m

)(
no
ne

)
= (m + iλn)

(
no
ne

)
(1)

and
(

m −Moe

−Meo m

)(
m Moe

Meo m

)(
no
ne

)
= (2)

(
m2 −MoeMeo 0

0 m2 −MeoMoe

)(
no
ne

)
= (m2 + λ2n)

(
no
ne

)
(3)

Compute eigenvectors no(e), m
2 + λ2 of preconditioned Dirac operator
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Staggered Dirac operator M

Eigenvectors of preconditioned operator are eigenvectors of M with squared magnitude
eigenvalues, construct the even part from odd,

ne =
−i
λn

Meono .

eigenvalues come in ± pairs: If (no , ne) is an eigenvector with eigenvalue λ, then

(−1)xψ(x) = (−no , ne)

is also an eigenvector with eigenvalue −λ.

(
m Moe

Meo m

)(
−no
ne

)
= (m − iλn)

(
−no
ne

)
, (4)

Thus we can construct pairs of eigenvectors with ±iλ for each λ2, no !
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HVP using spectral decomposition of M−1

Use conserved current

Jµ(x) = −1

2
ηµ(x)

(
χ̄(x + µ̂)U†µ(x)χ(x) + χ̄(x)Uµ(x)χ(x + µ̂)

)

and spectral decomposition of propagator

M−1x,y =

N(low)∑

n

( 〈x |n〉〈n|y〉
m + iλn

+
〈x |n−〉〈n−|y〉

m − iλn

)
(5)
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HVP using spectral decomposition of M−1

4Jµ(tx)Jν(ty ) =
∑

m,n

∑

~x

〈m|x + µ〉U†µ(x)〈x |n〉
λm

∑

~y

〈n|y〉Uν(y)〈y + ν|m〉
λn

+
∑

~x

〈m|x〉Uµ(x)〈x + µ|n〉
λm

∑

~y

〈n|y〉Uν(y)〈y + ν|m〉
λn

+
∑

~x

〈m|x + µ〉U†µ(x)〈x |n〉
λm

∑

~y

〈n|y + ν〉U†ν(y)〈y |m〉
λn

+
∑

~x

〈m|x〉Uµ(x)〈x + µ|n〉
λm

∑

~y

〈n|y + ν〉U†ν(y)〈y |m〉
λn

λn shorthand for m ± iλn, need to construct the matrices (meson fields)

(Λµ(t))n,m =
∑

~x

〈n|x〉Uµ(x)〈x + µ|m〉(−1)(m+n)x+m

(order eigenvectors λ0,−λ0, λ1,−λ1, . . . ,−λ2Nlow
)
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Light quark mass dependence of aµ FnalHpqcdMilc[Chakraborty et al., 2018]3

valence quarks. The smeared correlators have smaller
overlap with excited states than the local-local correla-
tor, and therefore improve the determination of the en-
ergies and amplitudes. We fit the correlators over the
symmetric time range [tmin, T � tmin], thereby ensuring
that the fit describes the correlator over the entire lattice
time extent T . To reduce the degrees of freedom in the
fit, in practice we average the correlator at times t and
T � t and fit only to the lattice midpoint; we also av-
erage the smeared-source, local-sink correlator with the
local-source, smeared-sink correlator. Because our lim-
ited number of configurations do not enable us to reli-
ably determine the smallest eigenvalues of the correlation
matrix, we employ singular-value-decomposition (SVD)
cuts with the values chosen to obtain stable fits with
good correlated �2 values. In practice, we replace all
eigenvalues below the cut with the value of the SVD cut
times the largest eigenvalue; this prescription increases
the variance of the eigenmodes associated with the re-
placed eigenvalues and, thus, the errors on the fit param-
eters. We choose the number of states and fit range based
on the stability of the ground-state and first-excited-state
energies and amplitudes.

For both ensembles and all valence-quark masses, we
obtain good correlated fits with stable central values and
errors using tmin/a � 3, Nstates � 3, and an SVD cut
of 0.015, which modifies about 40% of the eigenvalues
of the correlation matrix. For each of our six fits, the
contribution to the �2 from the 66 correlator data points
ranges from about 45-80. Although the lowest-energy
states in the vector-current correlators are I = 1 ⇡⇡ pairs,
we do not see any evidence of such states in our two-point
correlator fits. This is not surprising because there are
only a few ⇡⇡ states below the ⇢mass in these correlators,
and their amplitudes are suppressed by the reciprocal of
the spatial volume. The ground-state energies for the
correlators with mq = ml are E0 = 776.7(6.5) MeV and
E0 = 779.4(5.1) MeV on the Nf = 2 + 1 + 1 and Nf =
1+1+1+1 ensembles, respectively; these are statistically
consistent with the PDG average for the Breit-Wigner
mass M⇢0 = 775.26(25) MeV [25].

Following Ref. [8], we reduce the statistical errors in
aHVP

µ by replacing the correlator data at large times by
the result of the multiexponential fit. Although the fit
function is appropriate for the periodic lattice tempo-
ral boundary conditions, we correct for the finite lattice
temporal size by using the infinite-time fit function and
doubling the correlator extent to t = 2T . We use the
fitted correlator above t⇤ > 1.5 fm; with this choice,
roughly 80% of the value of aHVP

µ comes from the data

region. The values of aHVP
µ computed with Gfit(t) for

t⇤ > 1.5 fm agree within ⇠ 1� with those computed en-
tirely from data, but with more than ten times smaller
statistical errors for mq = mu.
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III. ANALYSIS

We calculate aHVP
µ using the method introduced by the

HPQCD Collaboration [26], in which one constructs the
[n, n] and [n, n� 1] Padé approximants for the renormal-

ized hadronic vacuum polarization function [b⇧(q2)] from
time moments of zero-momentum vector-current correla-
tion functions. These moments are proportional to the

coe�cients ⇧j in a Taylor expansion of b⇧(q2) around
q2 = 0. The true result is guaranteed to lie between
the [n, n] and [n, n � 1] Padé approximants. We em-

ploy the [3, 3] Padé approximant for b⇧(q2) obtained from
the first six Taylor coe�cients; the values of aHVP

µ com-
puted from the [3, 2] and [3, 3] Padé approximants di↵er
by 0.1 ⇥ 10�10.

In Ref. [8], the [n, n] and [n, n� 1] Padé approximants

for b⇧(q2) are constructed from rescaled Taylor coe�-
cients ⇧j ⇥ (E0/M⇢0)2j , where E0 is the ground-state
energy obtained from the two-point correlator fits. The
rescaling was found to reduce the valence-quark-mass de-
pendence of aHVP

µ because the ⇢-meson pole dominates
the vacuum polarization. In addition, the rescaling can-
cels most of the error from the uncertainty on the lattice
scale w0, which enters via the muon mass present in the
one-loop QED integral for aHVP

µ . Figure 2 shows aHVP
µ

on (1 + 1 + 1 + 1)-flavor ensemble at the up, down, and
average light-quark masses. The valence-quark-mass de-
pendence is statistically well resolved because the three
points are strongly correlated, and is smaller after rescal-
ing.

strong isospin breaking study

mπ = 135 MeV

a = 0.15 fm

change in aµ for 130 MeV pion is
negligible ∼ −2× 10−10
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